
COLLOQUIUM MATHEMATICUM
VOL. LIX
	

1990	 FASC. 2
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ARITHMETIC FUNCTIONS
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PENTTI H A U K K ANEN (TAMPERE) AND JERZY RUTKOWSKI (POZNAS1)

The Dirichlet convolution of two arithmetic functions f and g is defined
by

( f * g) (n) = Ef (d) g (n/ d) (n e N).
din

An arithmetic function f is called ([1], [6], [9]) rational of degree (n, m), where
n and m are nonnegative integers, if

f = fi* • • •*4*	 * • • •* g;i1

for some completely multiplicative functions . . .,f„, g 1 , . . , gm. For non-
negative integers n, in let R( „ , „,) denote the set of all rational arithmetic
functions of degree (n, m). In this note we shall prove the following

THEOREM. If f E R (,,,) and g c R(t, ,. ) , then fq E R(nt, m ), where

nt — max (n—m,t—r) if 0	 <nand°	 < t,

nt + max (m — n, r t)	 if in n or r t (n, t 0),
M = in	 if n = 0, t > 0,

r	 if t = 0, n > 0,

min (m, r)	 n = t = 0.

The estimation cannot be improved.

Some partial results in this direction are contained in [3], [7], [9] (see
also [4], [5]).

For every prime number p the generating series fp (z) of a multiplicative
function f to the base p is defined by

(z)	 f (pn) zn.

n = 0

Each multiplicative function f is completely determined by its generating
xries. It is known (see [6], p. 45) that a multiplicative function f is rational of
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degree (n, m) if and only if for each prime p there exist complex numbers
s? ),. , s,s(P) such that

(1) fp(z) = 
1 + r(p) z + . +	 zm
1 + sf ) z + . . . + s (nP) zit

	

(	 •

We shall investigate the generating series (fg) p (z) of the product fg of arithmetic
functions f and g using the following theorem due to Hadamard: If

A (z) Ean zn, B(z) =Eke and C(z) Ean bn zn,

then

(2) C(z) ---. A (s) B(-)l:-

	

27ct	 s s

where y is a contour in the s plane which includes the singularities of B(z/s)/s
and excludes the singularities of A (s) (see [2], p. 813, or [8], pp. 157-159).

LEMMA 1. Let

(3) .ip(z) =	 ak	 — zr , g p (z) =	 (1 —c; z)	 (1 — di z)' ,
k=1	 /=1	 1=1

where 0 m < n, 0 r < t, and let b 1 0 0 (1 = 1,	 n), b i, b12 for l 0 12,
dj 0 (j = 1,	 t) and di , 0 (1;2 for j 1 j2 . Then

1+ E 2 v zv

(fg)p(z) = 	  v=1

(1—bidjz)
1= 1 = 1

for some complex numbers 2 1 , ..., Am, where M = nt — max (n — m, t — r). More
over, Am 0 0 for suitable ak, b 1, c i, di.

Proof. Suppose n — m t — r. The case t — r n — m is similar. Now, using
Hadamard's theorem to the series fp(z) and g p(z) and the Cauchy residue
theorem we get

( fq)p (z) = 	 f (s)g
z
Y

Y	
ds

P	 P s

fl (1 — aks) (s — ciz)
= 	 .

fic=1	 1=1 St—r-1 as
2n	 n

n —bi s) n (s — diz)

	

/ = 1	 j=1

(4)

1
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t II (1 — ak dh z)	 (dh–c,)
k = 1	 i=1 	 At-r--- 1

14.h

h=1	 –b i dh z) 	 (dk—dj)
1=1	 j=1

j*h

(dh—Ci)
1

n	
i= 1 	 clih-r-1t 	 n

n (1 —bi dh z) h=1 	
(dh—di)	

k= 1

h = 11 = 1	 j=1
j*h

This proves (4). In order to prove that Am 0 for suitable ak, b 1, c i, di we
consider the coefficient of the highest power of z in the numerator of the above
fraction. It is equal to

j
r
^ f 	 t	 n
i=1 

= L	
dv-r- 1 n

M 
h=1	 (dh—C1)

j=1
j*h

k= 1	 u=11=1
u � h

H (dk—ca

	

=(-0-+(t-i).(1-1 ak)(H	 (II du)` E 
1=1 

k = 1	 1=1	 u=1	 h=1	 (dk—dj)
j=1

Note that

t	 n

—akdkz) fl fl (1 —biduz).
u = 1 1=1
u*h

akdh)	 ri (—bid.)

t	 Ah
gp (Z) = E 	

h=1 1 —dh

Therefore

r
(dk—ci)

where A i, = cith- r - 1 i=1 	

[I (dk -
j=1
j � h

m	 n	 t	 t

= lr + "n (II ak)(11 kr (11 dOn E Ahdrn.
k=1	 1=1	 u=1	 h=1

We have

r

ri (1 —ciz)
Ah	 i=1 

1 —dZh=1	 n (1 —diz)



t	 ao	 k	 r	 t	 co

A E (—ok k+i = zt-r-1	 (z+0	 E	 1)k
(PI+ 1•h=1	 k=0	 h	 i=1	 j=1k=0
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Substituting —1/z for z in the above equality gives

(z +ci)t A

Hence

h	  = Zt —r-1 1=1 

h=1 z+dh 	 t

11 (z +di)
j= 1

Comparing the coefficients of zn-m -1 we see that E Ahdr n need not vanish
h=1

(it suffices to assume that c i > 0 for i = 1, r and di < 0 for j = 1, ..., t). This
proves that 2M 0 for suitable ak , b 1 , c i , di and completes the proof of
Lemma 1.

Remark 1. Note that the fraction on the right side of (4) can be
irreducible. This follows from the observation that the number zo = 1/(bpdy),
where /3 e{l, ..., n} and y e {1, ..., t}, is a root of the polynomial in the
numerator of the fraction if and only if 

frly —c1) 11 ( 1 --la )	 ñb
i=1 k=1	 # u=11=1

b1 du 0
bird)

i.e.
u*y

r	 m	 t	 n 

(dy —c i) 11 (bp ak)	 (bfidy—bidu) = 0.

	

i = 1	 k=1	 u=11=1
u*7

LEMMA 2. Let fp (z) and g p(z) be given by (3), where m n or r t (n, t 0),
and let b 1 0 0 (1 = 1, n), b 11 b12 for 11 e 12 , di 0 0 = 1, ..., t) and
di , � cli2 for j1 j2 . Then

(5)	 (fg)p(z) = 	

fl (1 —bldjz)
1=1 j=1

for some complex numbers 2 1 , ..., Am , where M nt +max(m—n, r — t). More-
over, Am 0 for suitable ak , b 1 , c i , di.

Proof. The series fp(z) and g p (z) can be written in the form

	

n—	 Ai	 r-t	 t	 Dm

fp(z) =	 uk zk +	 ,	 , g p(z) = E vi zi+ E 	
1 — d

i 
.z

.

	

k = 0	 1=0	 i=1	 1
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Thus applying Hadamard's theorem we get

1	 z ds
Org)p(z) = -27tiy S f p (S) g p(—

S S

m—n r—t

	

k 
Z i ds	 1	 ni - . t	 sk

= 2,i f E E tik V I S	 + I E E uk Bi
s—d.z

ds
---- y k = 0 i=0	 s	 s	 21ci y k —_ 0 j—_ 1 	J

1	 r—t n	
Zi	

1	 n	 t
AiBi

27tt yi=0 i=1
v

1
A

i(1—b. ․)si+1	
.	 ds+ _ i y y 	+ -----: f E E	 2 '	 (1 —b i s)(s—diz)

ds.

	

/	 it/ yi=lj=i

We change the order of integration and summation and then evaluate the
obtained integrals using the Cauchy residue theorem to get

	

min(m - n,r — t)	 m—n t

(fg)p(z) = uk vk zk + E E uk
k=0	 k=0 j=1

	

r — t n	 n	 t	

j

AiB

	

+ E E	 + E E 	 A •

	

i=0 i=1	 i= j= 1	ui.jz

This proves (5). Moreover, after direct calculations we find that 2 M 0 for
suitable ak , 1) 1 , ci , di (cf. the proof of Lemma 1). The proof of Lemma 2 is
complete.

Remark 2. Note that the fraction on the right side of (5) can be
irreducible. This can be verified as in Remark 1.

Proof of the Theorem. Let fe R(n,m) and g e R(t,r) . Then the series fp(z)
and gp(z) are given by (3). Relating to n, m, r, t we distinguish 3 cases.

Case 1. Suppose 0 m < n, 0 r < t. If 1) 1 0 (1 = 1,	 n), bi , eb1  for
1 1 0 12 , di 0 (j = 1, t) and di, 0 di, for j 1 j2 , then by Lemma 1 the
series (fg)p(z) is given by (4). Now, note that the coefficients of za`

(a = 0, 1, 2, ...) in the series (fg) p (z) and in the polynomial if fl (1 — bi diz) are.
polyn omials in the variables ak , b 1 , ci , di . Hence the coefficients 2, in (4) also are
polynomials in the same variables. Therefore we may take the limits of both
sides of (4) when b i 0 (1 — 1, . n), di (j = 1, t), b11 -1)12 or di, cli2.
These operations do not raise the degrees of the polynomials + EAv e and
nri u_ bi diz). This ends the proof of the Theorem in Case 1.

Case 2. Suppose m n or r „>, t (n, t 0). Then applying Lemma 2 we can
proceed as in Case 1 to arrive at the desired result.

Case 3. Suppose n = 0 or t = 0. If n = 0 and t > 0, then

,9,)p (.Z) = 	 f (pk) g (pk) zk

k=0

and, consequently, Mfg e R(o .	 Also the coefficient of Z m is nonzero form)•

Juitable , f and q (for example, take f = 2 -1 *...*2 — (m factors), g = N *
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. . . * N * * . . . * (N, t times; ;:t- r times), where 2 is the Liouville
function and N (n) n for all n e N]. This proves the theorem in the case n = 0,
t > 0. The proofs in the cases n = t = 0 and n > 0, t = 0 are similar. The proof
of the Theorem is complete.
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