VOL. LIX

1990

FASC. 2

ON THE USUAL PRODUCT OF RATIONAL ARITHMETIC FUNCTIONS

BY

PENTTI HAUKKANEN (TAMPERE) AND JERZY RUTKOWSKI (POZNAŃ)

The Dirichlet convolution of two arithmetic functions f and g is defined by

$$(f * g)(n) = \sum_{d|n} f(d) g(n/d) \qquad (n \in \mathbb{N}).$$

An arithmetic function f is called ([1], [6], [9]) rational of degree (n, m), where n and m are nonnegative integers, if

$$f = f_1 * \dots * f_n * g_1^{-1} * \dots * g_m^{-1}$$

for some completely multiplicative functions $f_1, \ldots, f_n, g_1, \ldots, g_m$. For nonnegative integers n, m let $R_{(n,m)}$ denote the set of all rational arithmetic functions of degree (n, m). In this note we shall prove the following

THEOREM. If $f \in R_{(n,m)}$ and $g \in R_{(t,r)}$, then $fg \in R_{(nt,M)}$, where

$$M = \begin{cases} nt - \max(n - m, t - r) & \text{if } 0 \le m < n \text{ and } 0 \le r < t, \\ nt + \max(m - n, r - t) & \text{if } m \ge n \text{ or } r \ge t \ (n, t \ne 0), \\ m & \text{if } n = 0, \ t > 0, \\ r & \text{if } t = 0, \ n > 0, \\ \min(m, r) & \text{if } n = t = 0. \end{cases}$$

The estimation cannot be improved.

Some partial results in this direction are contained in [3], [7], [9] (see also [4], [5]).

For every prime number p the generating series $f_p(z)$ of a multiplicative function f to the base p is defined by

$$f_p(z) = \sum_{n=0}^{\infty} f(p^n) z^n.$$

Each multiplicative function f is completely determined by its generating series. It is known (see [6], p. 45) that a multiplicative function f is rational of

3 - Colloquium Mathematicum LIX.2

degree (n, m) if and only if for each prime p there exist complex numbers $r_1^{(p)}, \ldots, r_m^{(p)}, s_1^{(p)}, \ldots, s_n^{(p)}$ such that

(1)
$$f_p(z) = \frac{1 + r_1^{(p)} z + \dots + r_m^{(p)} z^m}{1 + s_1^{(p)} z + \dots + s_n^{(p)} z^n}$$

We shall investigate the generating series $(fg)_p(z)$ of the product fg of arithmetic functions f and g using the following theorem due to Hadamard: If

$$A(z) = \sum a_n z^n$$
, $B(z) = \sum b_n z^n$ and $C(z) = \sum a_n b_n z^n$,

then

(2)
$$C(z) = \frac{1}{2\pi i} \int_{\gamma} A(s) B\left(\frac{z}{s}\right) \frac{ds}{s},$$

where γ is a contour in the s plane which includes the singularities of B(z/s)/s and excludes the singularities of A(s) (see [2], p. 813, or [8], pp. 157–159).

LEMMA 1. Let

(3)
$$f_p(z) = \prod_{k=1}^m (1-a_k z) \prod_{l=1}^n (1-b_l z)^{-1}, \quad g_p(z) = \prod_{i=1}^r (1-c_i z) \prod_{j=1}^l (1-d_j z)^{-1},$$

where $0 \le m < n$, $0 \le r < t$, and let $b_l \ne 0$ (l = 1, ..., n), $b_{l_1} \ne b_{l_2}$ for $l_1 \ne l_2$, $d_j \ne 0$ (j = 1, ..., t) and $d_{j_1} \ne d_{j_2}$ for $j_1 \ne j_2$. Then

(4)
$$(fg)_{p}(z) = \frac{1 + \sum_{\nu=1}^{M} \lambda_{\nu} z^{\nu}}{\prod_{l=1}^{n} \prod_{j=1}^{l} (1 - b_{l} d_{j} z)}$$

for some complex numbers $\lambda_1, \ldots, \lambda_M$, where $M = nt - \max(n-m, t-r)$. Moreover, $\lambda_M \neq 0$ for suitable a_k , b_l , c_i , d_j .

Proof. Suppose $n-m \ge t-r$. The case $t-r \ge n-m$ is similar. Now, using Hadamard's theorem to the series $f_p(z)$ and $g_p(z)$ and the Cauchy residue theorem we get

$$(fg)_{p}(z) = \frac{1}{2\pi i} \int_{\gamma}^{r} f_{p}(s) g_{p}\left(\frac{z}{s}\right) \frac{ds}{s}$$
$$= \frac{1}{2\pi i} \int_{\gamma}^{\frac{k-1}{n}} \frac{\prod_{i=1}^{m} (1-a_{k}s) \prod_{i=1}^{r} (s-c_{i}z)}{\prod_{i=1}^{n} (1-b_{i}s) \prod_{j=1}^{t} (s-d_{j}z)} s^{t-r-1} ds$$

$$=\sum_{h=1}^{t} \frac{\prod_{l=1}^{m} (1-a_{k}d_{h}z) \prod_{\substack{i=1\\i=1}}^{r} (d_{h}-c_{i})}{\prod_{\substack{l=1\\j\neq h}}^{t} (1-b_{l}d_{h}z) \prod_{\substack{j=1\\j\neq h}}^{t} (d_{h}-d_{j})} d_{h}^{t-r-1}}$$

$$=\frac{1}{\prod_{h=1}^{t} \prod_{l=1}^{n} (1-b_{l}d_{h}z)} \sum_{\substack{h=1\\j\neq h}}^{t} \frac{\prod_{\substack{i=1\\j\neq h}}^{r} (d_{h}-c_{i})}{\prod_{\substack{j=1\\j\neq h}}^{t} (d_{h}-d_{j})} d_{h}^{t-r-1} \prod_{\substack{k=1\\k=1}}^{m} (1-a_{k}d_{h}z) \prod_{\substack{u=1\\u\neq h}}^{t} \prod_{\substack{l=1\\i=1}}^{n} (1-b_{l}d_{u}z).$$

This proves (4). In order to prove that $\lambda_M \neq 0$ for suitable a_k , b_l , c_i , d_j we consider the coefficient of the highest power of z in the numerator of the above fraction. It is equal to

$$\lambda_{M} = \sum_{h=1}^{t} \frac{\prod_{\substack{j=1\\j\neq h}}^{r} (d_{h} - c_{j})}{\prod_{\substack{j=1\\j\neq h}}^{t} (d_{h} - d_{j})} d_{h}^{t-r-1} \prod_{k=1}^{m} (-a_{k}d_{k}) \prod_{\substack{u=1\\u\neq h}}^{t} \prod_{l=1}^{n} (-b_{l}d_{u})$$
$$= (-1)^{m+(t-1)n} (\prod_{k=1}^{m} a_{k}) (\prod_{l=1}^{n} b_{l})^{t-1} (\prod_{u=1}^{t} d_{u})^{n} \sum_{h=1}^{t} \frac{\prod_{\substack{j=1\\i\neq h}}^{r} (d_{h} - c_{i})}{\prod_{\substack{j=1\\i\neq h}}^{t} (d_{h} - d_{j})} d_{h}^{t-r-1-n+m}.$$

Note that

$$g_p(z) = \sum_{h=1}^{t} \frac{A_h}{1 - d_h z}$$
, where $A_h = d_h^{t-r-1} \frac{\prod_{i=1}^{r} (d_h - c_i)}{\prod_{\substack{j=1 \ j \neq h}}^{t} (d_h - d_j)}$.

Therefore

$$\lambda_M = (-1)^{m+(t-1)n} (\prod_{k=1}^m a_k) (\prod_{l=1}^n b_l)^{t-1} (\prod_{u=1}^t d_u)^n \sum_{h=1}^t A_h d_h^{m-n}.$$

We have

$$\sum_{h=1}^{t} \frac{A_{h}}{1-d_{h}z} = \frac{\prod_{i=1}^{r} (1-c_{i}z)}{\prod_{j=1}^{t} (1-d_{j}z)}.$$

Substituting -1/z for z in the above equality gives

$$\sum_{h=1}^{t} \frac{A_h}{z+d_h} = z^{t-r-1} \frac{\prod_{i=1}^{r} (z+c_i)}{\prod_{j=1}^{t} (z+d_j)}$$

Hence

$$\sum_{h=1}^{t} A_h \sum_{k=0}^{\infty} (-1)^k \frac{z^k}{d_h^{k+1}} = z^{t-r-1} \prod_{i=1}^{r} (z+c_i) \prod_{j=1}^{t} \sum_{k=0}^{\infty} (-1)^k \frac{z^k}{d_j^{k+1}}.$$

Comparing the coefficients of z^{n-m-1} we see that $\sum_{k=1}^{n} A_k d_k^{m-n}$ need not vanish (it suffices to assume that $c_i > 0$ for i = 1, ..., r and $d_j < 0$ for j = 1, ..., t). This proves that $\lambda_M \neq 0$ for suitable a_k , b_l , c_i , d_j and completes the proof of Lemma 1.

Remark 1. Note that the fraction on the right side of (4) can be irreducible. This follows from the observation that the number $z_0 = 1/(b_\beta d_\gamma)$, where $\beta \in \{1, ..., n\}$ and $\gamma \in \{1, ..., t\}$, is a root of the polynomial in the numerator of the fraction if and only if

$$\prod_{i=1}^{r} (d_{\gamma} - c_i) \prod_{k=1}^{m} \left(1 - \frac{a_k}{b_{\beta}}\right) \prod_{\substack{u=1\\u\neq\gamma}}^{t} \prod_{l=1}^{n} \left(1 - \frac{b_l d_u}{b_{\beta} d_{\gamma}}\right) = 0,$$

i.e.

$$\prod_{i=1}^{r} (d_{\gamma} - c_{i}) \prod_{k=1}^{m} (b_{\beta} - a_{k}) \prod_{\substack{u=1 \ u \neq \gamma}}^{t} \prod_{l=1}^{n} (b_{\beta} d_{\gamma} - b_{l} d_{u}) = 0.$$

LEMMA 2. Let $f_p(z)$ and $g_p(z)$ be given by (3), where $m \ge n$ or $r \ge t$ $(n, t \ne 0)$, and let $b_l \ne 0$ (l = 1, ..., n), $b_{l_1} \ne b_{l_2}$ for $l_1 \ne l_2$, $d_j \ne 0$ (j = 1, ..., t) and $d_{j_1} \ne d_{j_2}$ for $j_1 \ne j_2$. Then

(5)
$$(fg)_{p}(z) = \frac{1 + \sum_{\nu=1}^{M} \lambda_{\nu} z^{\nu}}{\prod_{l=1}^{n} \prod_{j=1}^{l} (1 - b_{l} d_{j} z)}$$

for some complex numbers $\lambda_1, \ldots, \lambda_M$, where $M = nt + \max(m-n, r-t)$. Moreover, $\lambda_M \neq 0$ for suitable a_k , b_l , c_i , d_j .

Proof. The series $f_p(z)$ and $g_p(z)$ can be written in the form

$$f_p(z) = \sum_{k=0}^{m-n} u_k z^k + \sum_{i=1}^n \frac{A_i}{1-b_i z}, \quad g_p(z) = \sum_{l=0}^{r-1} v_l z^l + \sum_{j=1}^l \frac{B_j}{1-d_j z}.$$

Thus applying Hadamard's theorem we get

$$(fg)_{p}(z) = \frac{1}{2\pi i} \int_{\gamma}^{m} f_{p}(s) g_{p}\left(\frac{z}{s}\right) \frac{ds}{s}$$

= $\frac{1}{2\pi i} \int_{\gamma}^{m-n} \sum_{k=0}^{r-t} u_{k} v_{l} s^{k} \left(\frac{z}{s}\right)^{l} \frac{ds}{s} + \frac{1}{2\pi i} \int_{\gamma}^{m-n} \sum_{k=0}^{t} u_{k} B_{j} \frac{s^{k}}{s - d_{j} z} ds$
+ $\frac{1}{2\pi i} \int_{\gamma}^{r-t} \sum_{i=1}^{n} v_{i} A_{i} \frac{z^{i}}{(1 - b_{i} s) s^{i+1}} ds + \frac{1}{2\pi i} \int_{\gamma}^{n} \sum_{i=1}^{t} \sum_{j=1}^{t} \frac{A_{i} B_{j}}{(1 - b_{i} s) (s - d_{j} z)} ds.$

We change the order of integration and summation and then evaluate the obtained integrals using the Cauchy residue theorem to get

$$(fg)_{p}(z) = \sum_{k=0}^{\min(m-n,r-t)} u_{k}v_{k}z^{k} + \sum_{k=0}^{m-n} \sum_{j=1}^{t} u_{k}B_{j}d_{j}^{k}z^{k}$$
$$+ \sum_{l=0}^{r-t} \sum_{i=1}^{n} v_{l}A_{i}b_{i}^{l}z^{l} + \sum_{i=1}^{n} \sum_{j=1}^{t} \frac{A_{i}B_{j}}{1 - b_{i}d_{j}z}.$$

This proves (5). Moreover, after direct calculations we find that $\lambda_M \neq 0$ for suitable a_k , b_l , c_i , d_j (cf. the proof of Lemma 1). The proof of Lemma 2 is complete.

Remark 2. Note that the fraction on the right side of (5) can be irreducible. This can be verified as in Remark 1.

Proof of the Theorem. Let $f \in R_{(n,m)}$ and $g \in R_{(t,r)}$. Then the series $f_p(z)$ and $g_p(z)$ are given by (3). Relating to n, m, r, t we distinguish 3 cases.

Case 1. Suppose $0 \le m < n$, $0 \le r < t$. If $b_l \ne 0$ (l = 1, ..., n), $b_{l_1} \ne b_{l_2}$ for $l_1 \ne l_2$, $d_j \ne 0$ (j = 1, ..., t) and $d_{j_1} \ne d_{j_2}$ for $j_1 \ne j_2$, then by Lemma 1 the series $(fg)_p(z)$ is given by (4). Now, note that the coefficients of z^{α} $(\alpha = 0, 1, 2, ...)$ in the series $(fg)_p(z)$ and in the polynomial $\prod \prod (1-b_l d_j z)$ are polynomials in the variables a_k, b_l, c_i, d_j . Hence the coefficients λ_v in (4) also are polynomials in the same variables. Therefore we may take the limits of both sides of (4) when $b_i \rightarrow 0$ (l = 1, ..., n), $d_j \rightarrow 0$ (j = 1, ..., t), $b_{l_1} \rightarrow b_{l_2}$ or $d_{j_1} \rightarrow d_{j_2}$. These operations do not raise the degrees of the polynomials $1 + \sum \lambda_v z^v$ and $\prod \prod (1-b_l d_j z)$. This ends the proof of the Theorem in Case 1.

Case 2. Suppose $m \ge n$ or $r \ge t$ $(n, t \ne 0)$. Then applying Lemma 2 we can proceed as in Case 1 to arrive at the desired result.

Case 3. Suppose n = 0 or t = 0. If n = 0 and t > 0, then

$$(fg)_p(z) = \sum_{k=0}^m f(p^k) g(p^k) z^k$$

and, consequently, $fg \in R_{(0,m)}$. Also the coefficient of z^m is nonzero for suitable f and g [for example, take $f = \lambda^{-1} * \ldots * \lambda^{-1}$ (*m* factors), $g = N * \ldots$

...* $N * \lambda^{-1} * ... * \lambda^{-1}$ (N, t times; λ^{-1} , r times), where λ is the Liouville function and N(n) = n for all $n \in N$]. This proves the theorem in the case n = 0, t > 0. The proofs in the cases n = t = 0 and n > 0, t = 0 are similar. The proof of the Theorem is complete.

REFERENCES

- [1] T. B. Carroll and A. A. Gioia, On a subgroup of the group of multiplicative arithmetic functions, J. Austral. Math. Soc. Ser. A 20 (1975), pp. 348-358.
- [2] D. A. Klarner, A ring of sequences generated by rational functions, Amer. Math. Monthly 74 (1967), pp. 813-816.
- [3] J. Lambek, Arithmetical functions and distributivity, ibidem 73 (1966), pp. 969-973.
- [4] P. J. McCarthy, Arithmetical functions and distributivity, Canad. Math. Bull. 13 (1973), pp. 491-496.
- [5] Introduction to Arithmetical Functions, Springer, 1986.
- [6] J. Rutkowski, On recurrence characterization of rational arithmetic functions, Funct. Approx. Comment. Math. 9 (1980), pp. 45-47.
- [7] M. V. Subbarao, Arithmetic functions and distributivity, Amer. Math. Monthly 75 (1968), pp. 984–988.
- [8] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939.
- [9] R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33 (1931), pp. 579-662.

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF TAMPERE P. O. BOX 607 SF-33101 TAMPERE, FINLAND INSTITUTE OF MATHEMATICS ADAM MICKIEWICZ UNIVERSITY UL. MATEJKI 48/49 POZNAŃ, POLAND

Reçu par la Rédaction le 30.11.1988