Sisältöön
tampereen yliopisto: sis/luo-coms: opiskelu: tutkinto-ohjelmat: matematiikan ja tilastotieteen tutkinto-ohjelma: opinto-opas: kurssisivut:
Viestintätieteiden ja luonnontieteiden tiedekunnatTampereen yliopistoViestintätieteiden ja luonnontieteiden tiedekunnat
MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources, fall 2017

Course contents

Also available in the Curricula Guide.

Contents. Learning from multiple sources denotes the problem of jointly learning from a set of (partially) related learning problems, views, or tasks. This general concept underlies several topics of research, which differ in terms of the assumptions made about the dependency structure between learning problems. During the course, we will cover a number of different learning tasks for integrating multiple sources and go through recent advances in the field. Examples of topics covered by the course include data fusion, transfer learning, multitask learning, multiview learning, and learning under covariate shift.

Learning Outcomes. After the course the student is familiar with several settings related to learning from multiple sources, and is familiar with a selection of important approaches and methods used for learning in each setting.

Passing the Course

To pass the course, you must pass the exam and complete a sufficient number of exercises from the exercise packs. Exercise packs will be released during the course.

Preliminary grading scheme (note: preliminary information only, may change!): the exercise packs are graded in total either as 0 (fail) or as a fractional number between 1 and 5 (such as 1.34). The exam is similarly graded either as 0 (fail) or as a fractional number between 1 and 5. The total grade of the course is computed as round(0.8*ExamGrade + 0.2*ExercisesGrade), so that e.g. 4.51 rounds up to 5 and 4.49 rounds down to 4.

Teaching schedule

For general schedule information, please see the Teaching Schedule for the Academic Year 2017–2018.

Preliminary Lecture Schedule

The regular lecture time is Tuesdays 14-16 in room Pinni B0020. Some changes in lecture dates may be possible - if changes are made they will be announced here and by email.

12.9. L1: Introduction to the course, preliminaries. Lecture material: lecture slides (updated Oct 3)
19.9. L2: Basic Canonical Correlation Analysis. Lecture material: lecture slides (updated Oct 3)
26.9. L3: Basic multitask learning with neural network arrangements. Lecture material: lecture slides
3.10. L4: Transfer learning. Lecture material: lecture slides
10.10. L5: Transfer learning, continued.
17.10. L6: Probabilistic CCA and kernel CCA. Lecture material: lecture slides
24.10. L7: Multitask learning with task clustering or gating.
31.10. L8: Multitask learning with kernel methods and nonparametric models.
7.11. L9: Multi-view learning for classification by Co-training.
14.11. L10: Co-training continued; disagreeing views; semisupervised multi-task learning; self-taught learning.
21.11. L11: Continuing material from L6 and L7, no new slides.
28.11. L12: Domain adaptation.
5.12. L13: Learning sample correspondence
12.12. Exercise sets feedback session

Informal "home assignments"

Some assignments to help you think about the lecture material will be published here.

 

Exercise Packs

Exercise packs released during the course will appear here.


 

 
Ylläpito: mtt-studies@sis.uta.fi
Muutettu: 10.10.2017 11.56 Muokkaa

Tampereen yliopisto

Tampereen yliopisto
03 355 111
kirjaamo@uta.fi


KARVI-auditoitu HR Excellence in Research

YLIOPISTO
Tutkimus
Opiskelijaksi
Ajankohtaista
Yhteistyö ja palvelut
Yliopisto

AJANKOHTAISTA
Aikalainen
Avoimet työpaikat
Rehtoriblogi
Tampere3

PALVELUT
Aktuaarinkanslia
Avoin yliopisto
Hallinto
Kansainvälisen koulutuksen keskus
Kielikeskus
Kielipalvelut
Kirjaamo
Kirjasto
Liikuntapalvelut
Viestintä
Tietohallinto
Tutkimuspalvelut
Täydennyskoulutus
Tietoarkisto
» lisää palveluita

OPISKELU
Opetusohjelma
Opinto-oppaat
Opiskelijan työpöytä

SÄHKÖISET PALVELUT
Andor-hakupalvelu
Uusi lainasi
Intra
Moodle (learning2)
NettiOpsu / NettiRekka
NettiKatti
Sähköinen tenttipalvelu
TamPub
Office 365 webmail
Utaposti webmail
Wentti