TACTILE ACTUATOR TECHNOLOGIES
Contents

1. Eccentric rotating mass (ERM)
2. Linear resonant actuator (LRA)
3. Piezo
4. Electro-active polymers
5. EAP Demo video
6. Summary + power consumption aspects
7. Tactus
8. Senseg
Eccentric rotating mass (ERM)

- Vibration created by rotating off-centric mass with a motor.
- Common actuator. Used in toys, game controls, mobile phones...
- Frequency 90-200Hz.
- Power drain 130-160 mA.

- Good
 - Cheap.
 - Strong vibra – good for alerts.
 - No huge requirements for electronics.
- Downsides
 - Slow (30-50ms) while acceleration takes time.
 - Not suitable for high quality feedback.
 - Actuator can be sizable.

ERM actuators. Source: Precision microdrives
Eccentric rotating mass (ERM)
Linear resonant actuator (LRA)

- Magnet moved forward-backwards w/ coil.
- Common actuator in mobile phones.
- Frequency 150-200Hz, single frequency.
- Power drain 65 - 70 mA.
- Some have autotune which enables LRA to lock on resonant frequency.
- Can be multifunction device (MFD) with loudspeaker.

- Good
 - Cheap.
 - MDF makes possible to sync audio and tactile feedback.
- Downsides
 - Faster than ERM, but still rather slow (20-30ms).
 - Medium strength vibra -> alerts?
 - Braking the actuator can be complicated.
Linear resonant actuator (LRA)
Piezo

- Current bends the ceramic actuator.
- Variety applications e.g. motors, loudspeakers, sensors....
- High-end solution.
- Frequency 150-300Hz.
- Power drain 300mA.

- Good
 - Fast < 5ms.
 - High fidelity feedback.
 - Different mounting options e.g. the whole display can move.

- Downsides
 - Required electronics is more complex.
 - Cost?

Piezo

Bending piezo actuators. Source: Piezo Systems inc.
Electro-active polymers

- Group of polymers that change shape/size when current is applied.
- High-end solution.
- Typically attached to mass e.g. device battery.

- Good
 - Fast, < 5ms.
 - High fidelity feedback.
 - High strain.
 - Opens new innovation possibilities?

- Downsides
 - Electronics, need to generate voltages greater than 300v.

EAP examples - Robotics

Summary actuators

<table>
<thead>
<tr>
<th>Actuator Types and Characteristics</th>
<th>ERM</th>
<th>LRA</th>
<th>Piezo Module</th>
<th>EAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Bar or hockey puck</td>
<td>Hockey puck</td>
<td>Matchstick</td>
<td>Flat panel</td>
</tr>
<tr>
<td>Approximate Size</td>
<td>11 x 4.5 dia. mm</td>
<td>10 x 3.6 mm</td>
<td>3.5 x 3.5 x 42 mm</td>
<td>45 x 38 x 0.8 mm</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>130-160 mA RMS @3V</td>
<td>65-70 mA RMS @3V</td>
<td>300 mA RMS @3V</td>
<td>Ask vendor</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>90-200 Hz (non-uniform strength)</td>
<td>150-200 Hz, single frequency (e.g. 175 Hz)</td>
<td>150 to 300 Hz usable</td>
<td>90 to 125 Hz (resonant peak), 50-200 Hz usable</td>
</tr>
<tr>
<td>Mechanical Time Constant</td>
<td>50 ms</td>
<td>30 ms</td>
<td><5 ms</td>
<td><5 ms</td>
</tr>
<tr>
<td>Durability</td>
<td>Variable</td>
<td>Very durable</td>
<td>Very durable</td>
<td>Excellent</td>
</tr>
<tr>
<td>Fidelity of Sensations</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

- Measurements with N8 indicate that haptic feedback doubles the single event (opening/closing menu) power consumption.
- In practice, when haptic feedback is applied, the power consumption is 0.95 – 7% more than without haptic feedback [http://www.immersion.com/docs/haptics-power-consumption-analysis.pdf].
Tactus

- Flat touchscreen surface can changed to have physical buttons.
- Buttons raised fully within 1s

Discussion: while system is essentially a hardware component, the UI layer needs to be synched early in design phase?

Senseg

• Creates Coulomb force based pressure sensations between finger and touch screen surface by passing current to insulated electrode.

• Marketing claims: High fidelity, different textures.

• How much voltage is required?

http://senseg.com/technology/senseg-technology
THANK YOU