Tactile feedback technology & applications

Jussi Rantala

Tampere Unit for Computer-Human Interaction (TAUCHI)
School of Information Sciences
University of Tampere, Finland

Based on material by Jukka Raisamo and Roope Raisamo
Methods for tactile stimulation

- The tactile sense can be stimulated using a variety of different methods

- These methods include:
 - Skin deformation
 - Vibration
 - Electric stimulation
 - Skin stretch
 - Friction (micro skin-stretch)
 - Temperature
Tactile actuators

- There are several different technologies used in tactile interfaces
 - Vibrating motors
 - Linear motors
 - Solenoids
 - Piezoelectric actuators
 - Pneumatic systems
 - ... whatever causes an effect can be used

- Possible actuator configurations
 - Single element
 - Multiple elements (an array/matrix)
Actuators: vibrating motors
Vibrating motors

• How they work:
 - Applies motion either directly to the skin or through mediating structure
 - Provide relatively small-amplitude vibration (linear or rotary)
 - Used singly or in arrays

• Most common types
 - DC-motors with an eccentric rotating mass
 - Voice coils
Vibrating motors: eccentric rotating mass

- DC-motor rotates an off-center spinning mass
 - Inexpensive & existing technology
 - Poor temporal resolution: it takes time to start and stop the mass

- Frequency control only (amplitude $\approx \text{freq}^2$)
 - Amplitude fixed by the size & the weight of the rotating mass and the speed of rotation

- Used currently in various devices
 - Mobile phones, pagers, game controllers
Vibrating motors: voice coils

- Voice coil basics
 - Current driven through the movable coil
 - Created magnetic field interacts with the field of the permanent magnet (one-way movement)
 - Vibrations created by switching the current on/off

- Both frequency and amplitude can be controlled somewhat independently
 - However, the motor has always a peak at certain frequencies (e.g., 250 Hz)
Vibrating motors: overview

- **Advantages:**
 - Simple, existing technology
 - Relatively inexpensive
 - Easily powered and controlled
 - Quite small power consumption

- **Disadvantages:**
 - Not very expressive feedback
 - Vibration can sometimes be irritating
 - Can be hard to miniaturize efficiently
Actuators: linear motors
Linear motors: pin displays

• How they work:
 - Pins in an array are actuated independently
 - The actuated pins contact the surface of the skin

• Advantages:
 - Simple, readily available
 - Continuously positionable, fast movement
 - Versatile: static pressure, vibration, shapes

• Disadvantages:
 - Very difficult to pack tightly
 - Relatively expensive (several motors per device)
Example: tactile array

- Mimics complex tactile sensations
 - Stimulate the fingertips
 - Each pin has a piezoelectric actuator

- Examples
 - Top left: 100 pins over 1 cm², frequency range 25-400 Hz
 - Bottom left: 24 pins with 2 mm spacing, 25-500Hz
Example: Braille displays

- Braille = tactile language for sensory substitution
- Visually impaired users read information by sensing different configurations of 6 or 8 pins
 - Each pin is either raised or lowered
- Also solenoids can be used
Example: tactile arrays in a mouse

- Allows the user to scan an image
 - The pins rise and fall dynamically delivering tactile stimuli to the fingertips
 - Can be used to code patterns and colours into tactile data
- VTMouse (2001)
 - Three 4x8 matrices (32 pins) put in the place of the buttons
- VTPlayer (2003)
 - Two 4x4 matrices with 16 pins
Actuators: solenoids
Solenoids

- **Multimodal mouse by Akamatsu & MacKenzie (1996)**
 - Solenoid driven pin under the left index finger that moves up & down to generate vibration

- **Haptic Pen by Lee *et al.* (2004)**
 - Solenoid shakes the pen by moving up and down at top of the pen
Actuators: piezoelectric actuators
Piezoelectric actuators 1/2

• How they work:
 - Single or multilayer ceramic elements
 - An element expands/bends when voltage is applied
 - Multiple layers can be used to amplify the effect

• Properties:
 - Very large forces but small motions
 - One element typically around 0.2-1.0 mm thick
 - Resolution for frequencies ~0.01 Hz
Piezoelectric actuators 2/2

- Electromechanical device that converts electrical energy into mechanical motion

- Typically very compact as only few components are used in a complete system
 - Actuator itself can be very small
Example: STReSS & Virtual Braille Display

- 2D tactile display with an array of miniature actuators
 - Stimulate the fingertip at about 1 cm2 in area

- Elements can be bended in two directions to create different sensations to the fingertip

http://www.laterotactile.com/
Example: Tactile Handheld Miniature Bidirectional (THMB)

- THMB is an improved version of VBD miniaturized to fit inside a PDA-size case
- The handheld device includes an LCD screen that allows combining tactile and visual feedback
- THMB stimulates the user's thumb
- It is mounted on a vertical slider so that it can be dragged up and down for input

http://www.laterotactile.com/
Example: touchscreen actuation

- Larger piezo elements can be used to actuate a display
- Different tactile sensations can be created by driving the piezo using different parameters
 - Click, constant vibration, ...

(Laitinen and Mäenpää, 2006)
Piezoelectric actuators: overview

- Advantages:
 - Usually small in size
 - Potentially inexpensive in large volumes
 - High frequency and static modes
 - Very fast response time
 - Low power consumption

- Disadvantages:
 - Dynamics: small displacements require accurate amplification
 - High driving voltage
Actuators: pneumatic systems
Pneumatic systems

- Three possible output modes based on skin indentation (and vibration)
 - Suction
 - Air-pressure
 - Vortices

- How it works:
 - Technologies: fillable air-pockets, air jets, suction holes
 - Vibratory rates: typically 20-300 Hz
 - Static pressure with sealed pockets
Pneumatic systems: suction

- Draws air from a suction hole creating an illusion that the skin is pushed
 - Very low spatial resolution (only appropriate for the palm)

- Two basic patterns of stimulation (large holes and small holes)
 - Need for regulation of air pressure (= lots of equipment)
Pneumatic systems: air-pressure

- **DataGlove**
 - Bandwidth of 5 Hz, amplitude & frequency modulated

- **Teletact II**
 - 29+1 air pockets (40 tubes to control the air-pressure)
 - Object slippage (fingers) + force feedback (palm)

DataGlove with pneumatics
(Sato et al., 1991)

Teletact II
(Stone, 1992)
Pneumatic systems: vortices

- Emits a ring of air called a vortex that can be felt in mid-air
 - Controlling a flexible nozzle allows for directed sensations
 - Operating distance of roughly one meter

AIREAL (Sodhi et al., 2013)
Pneumatic systems: overview

• Advantages:
 - Tubing make it possibly to take the bulky part away from point of application
 - Pressure can be more appropriate for some applications than pins or vibrating motors
 - Can mimic skin-slip (with multiple inflated pockets)
 - Vortices can enable mid-air interaction

• Disadvantages:
 - Previously has required bulky parts (air compressor or motor-driven pistons)
 - Not really portable, can be very noisy
 - Difficult to display sharp edges or discontinuities
Actuators: shape-memory alloys
Shape-memory alloys

- Metals that "remember" their geometry
 - Restores its original geometry when heated
 - Usually temperature change of about 10°C is necessary to initiate the phase change

- How it works:
 - Expands (and heats up) when current runs through it
 - Contracts when cools down
 - Stimulates the skin with vibration (expand-contract cycles)
Shape-memory alloys

Lumen: A Shape Changing Display

Tactile Display based on Shape Memory Alloy (MIT Touchlab)

video
Tactile displays: skin stretch
Skin stretch

- Rotational skin stretch

- What happens:
 - Forces are applied to skin for displacement
 - Contact forces are perceived as stretching of the skin

- Applying skin stretch is being investigated as an alternative to vibrotactile feedback

(Bark et al., 2010)
Friction: skin-slip display

• Micro skin-stretch
 - Motor driven smooth cylinder or belt strapped against finger
 - When rotates, stimulates the mechanoreceptors

• Felt as a sensation of slip
 - Grasp simulations: causes the user to increase grip force
 - Often used to append force feedback displays

(Chen and Marcus, 1994)

(Minimizawa et al., 2007)
Tactile displays: electrotactile stimulation
Electrotactile stimulation

- Electrotactile or electrocutaneous stimulation is not widely accepted for consumer use
 - Stimulate receptors and nerve endings with electric charge passing through the skin
 - Often sudden bursts give an "invasive" impression
 - “Square waves” can be easily felt as too strong stimuli and they keep tickling the nerves
 - The sensitivity to electrical stimulation varies greatly between and within individuals (e.g., sweating & pressure affect the sensation)

- Used mostly in research prototypes and for rehabilitation purposes
Example: SmartTouch

- Tactile display to mimic realistic skin sensation

- Two layers
 - Top layer: 4x4 array of stimulating electrodes
 - Bottom layer: optical sensors

- Visual information is captured by the sensors and displayed through electrical stimulation
 - E.g., the black stripes on a paper are perceived as bumps

http://www.star.t.u-tokyo.ac.jp/projects/smarttouch/
Tactile displays: electrovibration
Electrovibration

• Contrary to electrotactile stimulation, in electrovibration there is no passing charge
 - Electrovibration is based on electrostatic friction between an object and user’s skin
 - Can be felt as vibration

• Electrovibration requires no moving actuation parts and is therefore relatively easy to add to existing devices
Example: TeslaTouch

• Moving a finger across a touch surface generates electrovibration (Bau et al., 2010)
 - Based on a transparent electrode sheet placed under the touch surface, electrodes excited with a periodic signal
 - Electrostatic attraction between the electrode and finger is perceived as vibration

• Senseg has been developing similar technology
Tactile displays: dielectric elastomer actuators
Example: Dielectric polymer

- Uses a dielectric polymer film (c) between two electrodes (b & d)
 - Voltage causes the electrodes to attract each other
 - The film contracts in thickness and expands in area

- Runs at around 1000 V (DC) at very low current
 - Require less power compared to traditional vibration motors and piezo actuators
Actuators: ultrasonic transducers
Example: Ultrasonic transducer

• Based on acoustic radiation pressure
 - A prototype consists of 324 airborne ultrasound transducers controlled individually
 - The feedback can be felt about 20 cm over the surface

• Although the produced force is weak to feel constant pressure, it is sufficient for a vibratory sensation
Actuators: electrorheological fluids
Example: Electrorheological fluids

- Viscosity of liquid changes into semi-solid when electric current is applied (pic. a -> b)
 - Semi-solid liquid can be felt as a more resistive surface
 - Change in viscosity is proportional to the current
 - From a -> b within milliseconds

- Can be used to simulate different surface frictions
 - Also with force-feedback
Actuators: Thermal actuators
Example: Peltier elements

- Peltier elements are based on two sides controlled using DC current
 - When one side gets cooler, the other gets hotter
 - Human neutral zone 28-40°C

- Cold stimuli are more perceivable and comfortable than warm stimuli (Wilson et al., 2011)
 - Faster-changing stimuli are easier to detect but less comfortable
Thermal systems: overview

• **Advantages:**
 - Silent technology
 - Usable in situations with environmental vibration

• **Disadvantages:**
 - Environmental temperature affects the sensation
 - Not particularly expressive (i.e., the range of different sensations is limited)
 - Temperature variations must be controlled properly so that the stimulation is not uncomfortable