Mobile & ubiquitous haptics

Jussi Rantala

Tampere Unit for Computer-Human Interaction (TAUCHI)
School of Information Sciences
University of Tampere, Finland

Based on material by Jukka Raisamo and Roope Raisamo
Contents

1. Haptic communication
2. Affective haptics
3. Haptic navigation
4. Haptics in cars
5. Rehabilitation
Haptic communication
Communication via touch (1/2)

- Touch can be used as an alternative information communication channel

- Examples of early work:
 - Braille (Louis Braille, 1824)
 - Tactile language used by visually impaired users
 - Different configurations of 6 or 8 dots are used for presenting alphabetical information
 - Tadoma (Sophie Alcorn, ~1910)
 - “Tactile lip reading” for deaf-blind people: a person places his/her thumb on the speaker's lips while the other fingers touch the speaker's face and neck
 - Possible to understand everyday speech at very high levels
Later work has used technology to stimulate the sense of touch for communication purposes.

Vibratese (Geldard, 1957)
- Like tactile Morse code
- 5 vibrators placed on the user’s trunk could present 45 basic elements (letters, numerals, short words)
- Elements coded by amplitude, duration and location
- Reading rates of approximately 38 words per minute have been reported
Tactile icons (1/2)

• **Tactons or tactile icons**
 - “Structured, abstract messages that can be used to communicate information non-visually” (Brewster and Brown, 2004)
 - Different actuators can be used to create tactons (e.g., vibration motors)
 - Coded by, e.g., amplitude, frequency, duration and rhythm
 - Should be practical, reliable, quick to identify and pleasant
Tactile icons (2/2)

- Tactons have been used for communicating different types of information
 - Alerts (Brown and Kaaresoja, 2006)
 - Directions (Yatani et al., 2009)
 - Letters (Rantala et al., 2009) video

- In general, interpreting the meaning of different icons gets more difficult when the number of icons increases
 - Use of tactons requires training
Interpersonal haptic communication

- The sense of touch plays an important part in traditional human-human interaction
 - Greetings
 - Affection
 - Playful touch
- This can be mimicked to some extend using haptic technology
- Interpersonal haptic communication attempts to mediate information between users who are physically apart
Example: inTouch

• One of the first prototypes for two-way haptic communication (Brave and Dahley, 1997)
 - Provides a physical link between users separated by distance
 - One user can move the rollers and simultaneously feel the movement created by another user

http://tangible.media.mit.edu/projects/intouch/
Example: ComTouch

- ComTouch (Chang et al., 2002) transferred finger touch input to vibrotactile stimulation

- The touch channel could be used during audio communication
 - Participant pairs used touch mainly for emphasis, mimicry and turn-taking
Example: Shake2Talk

- **Shake2Talk** allowed users to send and receive vibrotactile messages by combining auditory and tactile elements
 - Vibration presented using an eccentric rotating mass

(Brown and Williamson, 2007)
Example: CheekTouch

- With CheekTouch users could send different touch sensations by interacting with the touchscreen of a mobile phone (Park et al., 2009)
 - A 4x3 vibrotactile display for presenting mediated touch
Example: Touch gestures

- Mobile devices can detect different touch gesture types and convert them dynamically into vibrotactile stimulation (Rantala et al., 2011)
 - Squeeze and finger touch were preferred over shaking
 - This could be due to the fact that squeeze and finger touch better resembled real touch
Affective haptics
Affective haptics (1/4)

• Can haptics evoke emotions?
 - Touch is often private
 - Touch tends to increase trust and altruistic behavior
 • The Midas touch phenomenon -- a waitress received bigger tips when she would briefly touch her customers on the shoulder
 - For some interactions touch may be socially inappropriate

• Humans can express a range of emotions through real interpersonal touch (Hertenstein et al., 2006)
 - The effectiveness of mediated or “remote touch” depends on the users, design and technology used
 - Touch communication can be altered and used in ways that are not possible in the real world
Affective haptics (2/4)

• One way to study whether haptic interaction can evoke emotions is to measure participants’ subjective responses after use.

• With the dimensional theory of emotions, it is possible to use dimensions of valence and arousal for measurement.
 - In general, stimuli with high intensity or amplitude are often perceived as arousing and unpleasant.
 - More subtle stimuli are perceived as relaxing and pleasant.
Affective haptics (3/4)

- Another way is to use the differential theory of emotions which suggests that emotions can be seen as distinct categories (e.g., happiness, sadness and anger)

- One study showed that participant pairs were above chance in communicating distinct emotions remotely using a haptic knob (Smith and MacLean, 2007)
 - Researchers have also introduced several other prototypes but the effectiveness of evoking emotional responses is rarely studied empirically
In addition, it is also possible to measure psychophysiological responses such as:

- Heart rate (HR)
- Galvanic skin responses (GSR)
- Electromyographic responses (EMG)

These lower level responses can be used during haptic stimulation and they are generally more objective.
Example: The Haptic Creature

- Developed for studying display of affect in human-robot interaction (Yohanan et al., 2011)
 - Presents 9 emotional states when a user interacts with it via touch
 - 3 actuation types for presenting emotions: breathing (servomotor), ears (airflow to rubber bulbs), purring (ERM motor)
 - Could be used, e.g., for therapeutic interventions for children, the ill or the elderly
Example: Hug-over-distance

- An inflatable vest that can be remotely triggered to create a sensation resembling a hug (Mueller et al., 2005)
 - Air compartments in the vest are filled using a compressor
 - Creates some noise when actuated

- Couples in a user study did not consider the device useful in daily life

http://www.floydmueller.com/portfolio/hug_over_a_distance.htm
Example: TapTap

- A wearable scarf designed for emotional touch therapy (Bonanni et al., 2006)
 - Vibration motors and solenoids attached to the scarf were used for imitating touch gestures of tap, press, stroke and contact
 - Included also touch sensing for recording and playing back basic touch sequences
Haptic navigation
Haptic navigation

- Haptic and tactile stimulation can be used to provide directional navigation information.
- One of the advantages of using haptics is that visual and auditory senses are often already reserved for other purposes (e.g., observing traffic).
Example: Waypoint navigation

- Vibrotactile waist belt with eight tactors (van Erp et al., 2005)

- Spatial information translated into a direction on the torso, used in two experiments:
 - Experiment 1 with 12 pedestrians
 - After about 30 min, the participants demonstrated walking speeds near to normal
 - Experiment 2 in the context of a helicopter and a fast boat
 - Only directional information was provided
 - Vibrations were well recognized in both cases
Example: Sports applications

- Guidance of where to, how and when to move (van Erp et al., 2006)
 - Presenting tactical information (in soccer)
 - Belt indicates the direction where to move
 - Four other vibration signals:
 - High up the back “keep your head up”
 - Left shoulder “look left”
 - Right shoulder “look right”
 - Middle of the chest “stop”
 - Posture information (skating, cycling, rowing)
 - Corrective instructions (e.g., shoulders & back position)
 - Motion co-ordination pattern (posture plus timing)
Example: Lead-me

- Generates a pulling sensation by oscillating a small mass back and forth
 - Small acceleration forward, large backward
 - Provides a sensation of force

- Can be used for indicating direction and helping in navigation

video
Example: Skin stretch for direction

- Communicates directions with a small rubber cylinder pressed against a user’s fingertip (Gleeson et al., 2009)
 - Moves 0.05 to 1 mm at constant speed to create lateral skin stretch
 - Can be moved to four directions
 - In a study, directions could be perceived already with the smallest stretch distance (0.05 mm)
 - Could be applied to hand-held devices
Example: CabBoots

[Image]

Example: Haptic radar

video http://www.k2.t.u-tokyo.ac.jp/perception/HapticRadar/index-e.html
Haptics in cars
Haptics in cars (1/2)

- Haptics can be useful in a car environment where user’s cognitive load is often high
 - Using alternative modalities for communicating information to the driver may reduce the load

- Also, modern cars have less physical controls (e.g., knobs, sliders) that could provide passive haptic feedback and enable eyes-free use
 - Active stimulation could potentially bring some of this haptic information back
 - Haptic stimulation in a car must be carefully designed so that it is not confused with environmental vibration
Haptics in cars (2/2)

• Influence of steering wheel torque feedback in a dynamic driving simulator (Toffin et al., 2003)
 - Drivers on the simulator control their vehicles in curves with quite different torque feedback strategies
 - Zero torque or inverted torque feedback makes driving almost impossible

• Using spatial vibrotactile cues to direct visual attention in driving scenes (Ho et al., 2005)
 - Vibrotactile stimuli presented on either front or back to inform of the rapid approach of a car
 - Participants responded significantly faster when vibrotactile cues were given
Example: Pneumatic steering wheel

- A pneumatic tactile alerting system for the driving environment (Enriquez & MacLean, 2001)
 - A steering wheel with pneumatic pockets to produce pulsations at around 5 Hz
 - Lowered reaction time significantly
 - Using three frequency levels provided extra information that helped to identify a problem
Example: Touchscreen haptics in a car

- Studying the effect of touchscreen haptics on driving performance in a simulator (Pitts et al., 2010)
 - Driving performance unaffected by vibration feedback
 - However, participants spent less time looking at the screen when vibration was used
 - Vibration also improved user experience and increased confidence
Example: Lane departure warning

- Car manufacturers use haptic warnings of lane departure
 - Cameras or other sensors detect if the vehicle drifts out of the lane
 - In case of a lane departure, haptic feedback is given to the seat (Citroën), safety belt (Citroën) or steering wheel (BMW) to get the driver’s attention

http://www.citroen.co.uk/about-us/technology/safety/lane-departure-warning-system/
Rehabilitation
Rehabilitation

- Providing haptic stimulation to a user’s body can be used, for example, for guiding limb movement.

- The advantage of using haptics is that instructions can be directed to and felt in a particular body site:
 - This can be more intuitive than using visual or auditory information for guidance.

- Both force feedback and tactile feedback have been studied in this context.
Example: Telerehabilitation through a mobile device

- Kinesthetic therapy for patients with arm motion coordination disorder (Gutierrez et al., 2004)
 - Grounded haptic device attached to the patients arms
 - Therapist uses a handheld device to monitor and control the tasks
Example: HapticWalker

- Full foot guidance for rehabilitation
 - Gait restoration is often necessary after neurological injuries
 - Freely programmable walking trajectories

- Virtual reality applications
 - Head mounted display (HMD) for visual immersion
 - Virtual ground (e.g., floor, staircase up/down, inclined plane)
 - Different ground conditions (e.g., concrete, wood = hard contact, carpet = soft contact)
Example: Balance aids

- **Passive: vibrating insoles** (Priplata *et al.*, 2003)
 - Improved the balance of elderly people when they stood on a pair of randomly vibrating insoles (figure on the left)

- **Active: tilt sensors & vibrotactile actuators designed for balance-impaired persons** (Wall *et al.*, 2001)
 - Gives feedback to the user when to move one’s leg (figure on the right)
Example: Movement retraining

- Track the normal gait of a user and provide tactile feedback in real time for learning a new gait that strains the knees less (Shull et al., 2011)
 - Vibrotactile actuators presented feedback to the knees and toes
 - Skin stretch feedback for the trunk

- Six week gait retraining program reduced symptoms for individuals with knee osteoarthritis and knee pain